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ABSTRACT

A generalized method called Rotational Discrimination for nonlinear
regression and equation solving is described. An adaptive methed for
] ’ system identification is then described for two types of situations;
namely, time domain data or frequency domain data may be used. A method
is also described for reducing certain types of time domain data into
frequency form. Digital computer programs are listed and their usage is

described for each of these procedures.
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-and the Gauss-Newton method to minimize a sum of squares functiom-

I. Rotational Discrimination for Nonlinear Regression and Equation Solving.

The method of Rotational Discrimination (RD) was first described by
Fariss and Law ( 1 ). A brief description of the algorithm will now be
given. - .

RD belongs to a class of methods sich that the computations always begin
from a point 5? in n - dimensional space and a move or increment, Ax, is
computed such that_z} = x° + FAx forms a search vector along which a
"better" point is sought. This logic is repeated until no further im-
p;ovement is possible. The choice of the scalar F is made by a one-
dimensional search procedure.

The success of the method depends on a property of the Ax vector which
shall be called truncation convergence. An algorithm for minimization has -

F

this property if, for sufficiently small B, the objective function

Q(§? + F Ax) takes on a smaller valve than Q(E?)- What this means is
that Ax must point in a direction such that Q decreases at least locally.
Hence, a better point can always be found by truncating F to some small
positive value.

RD uses a unique combination of the method of scaled steepest descent

A brief review of these methods will now be given in the

sequel.

I. 1. Formulation as a Minimization Problem. The specific problem to

which attention is now given is that of finding the value of an n-vector

X such that the functions

fJ(_?f_) = 0; ji=1,2, ..., n (1-1)
-1-



are satisfied. This problem may easily be formulated as a minimization

problem by forming the sum of squares of residual as an objective function.

n
Q=% I f, , (1-2)

Clearly, if Q is minimized to its absolute minimum of zero then a solution
to the original problem has been obtained.

The nonlinear regression problem may also be expressed as a sum of

squares minimization problem with

Hh
[

g;(®) - éj; j=1,2, ... n (1-3)

d

where

ny number of data points
gj(g) = computed value of a function for the jth
data point
i éj = experimental value of the function for the

ith data point

X = an n-vector of regression coefficients

I. 2. Unscaled Steepest Descent. Perhaps the oldest and still very

popular method for unconstrained minimization is the method of steepest
descent (SD). Strictly speaking, this method is a continuous one rather
than a discrete one in that the path of steepest descent is a continuous
curve. For practical use, however; the direction of steepest descent is

found at the base point, 5?, and this direction is used to form the search

vector.



The direction of steepest descent is given by

3Q(x%)
Ax = -

- — (1-4)
X

The search vector then becomes

x=x +hix

The value of h is usually selected by performing a one-dimensional search
for a minimum in Q with respect ﬁo h. Perhaps the most popular one-
dimensional search is the Golden Section Search (2). A more sophisticated
method is described by Fariss and Law (3). It is also possible to simply
find a value of h for which Q is smaller than at the base point rather
than finding the minimum. There is no generally 'best" procedure to use.
In order to begin the search for h, however, it is necessary to select
some value of this parameter as a first estimate. It is efficient to
select this value of h based on the optimal h from the previous iteration.

One means of accomplishing this is to use the following relationship:

(i+1) -
B = exp(0.88255 .tan T (0.56654 In F)] (-9
p @) _
o
where
(1)
F = hoEt (1-6)
p (D
(o]
and ho(i+1) = first estimate of optimal h for (i+l) th iteration
ho(i) = first estimate of optimal h for i th iteration
hoéi) = optimal h for the i th iteration



This formula is purely empirical and merely attempts to update hé based

on past experience while not allowing large changes in ho from one iteration
to the next. The previous ho is multiplied by.a factor between % and 4,
with % corresponding to F = 0 and 4 to F =, If F=1, ho is not changed.

The Ax vector of Equation (1-4) is normal to the objective function
contour at the base point and is guaranteed to have the truncation
convergence properfy.

The most sérious drawback of the method of steepest descent is the
zig-zag tendency especially when near the solution. This property is best
explained in the two-dimensional case. Referring to Figure 1-1, it is
easily seen that successive directions of steepest descent will‘b; orthogonal

(perpendicular in 2-dimensions).

x&A\
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SO Padh

Fig. 1-1. Steepest descent for a
. quadratic function.

In order to overcome this difficulty, several techniques have been
suggested [see, for example, Booth (3)]. One particular modification is

the Method of Parallel Tangents developed by Shah, Buehler and Kempthorne (4).
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Scaled steepest descent is another modification and will be described in

the sequel.

I. 3. The Gauss-Newton Method (GN). This method uses Newton's method as

a basis. That is, the equation for determining Ax is given by

2
3 Q Ax = 3Q

2 9x (1-7)
X -

. . . . . 2
A useful and effective approximation is made for the He551an,,§_9.’ however.
[ ‘

ox
In terms of the sum of squares Q function, -
n
3Q = & £, 9f, (1-8)
ox., j=1 I L
i 0X,
i
and
2
n o £,
) 2 . [af. BF, g, sy
8%, 8% J=l Lox;  ox 0% § 9%y 4
i
Now, for equation solving the fj + 0 as the solution is approached.
For regression problems, the fj do not tend to zero but they tend to
distribute about zero, some being positive and some being negative.
Therefore, the so-called Gauss-Newton approximation is to omit the second
term in the expression for azg . That is,
ax.axk
i
2 nof, LE,
3 Q “ ‘Zl 3] 97 = Gik
J=
9X 3Xk Bxl axk
Thus, the relation for step size determination becomes
9
¢ ax = 53 1-10)
-5-



In the absence of singularity of the G matrix, the (GN) procedure is
very efficient at converging to the solution from a near point (i.e., where
the sum of squares function becomes nearly quadratic and the fj are small).
This behavior could be anticipated from the approximate quadratic representa-
tion of Q by using the G matrix as an approximation to BZQ/3§?. Thus,
quadratic convergence is obtained in the neighborhood of the solution.

As a protection against very long search ﬁrials, it is customary to
limit the length of the search vector to some arbitrary value. While this
will usually force convergence, it has one distinct disadvantage. In order
to clearly understand why this is so, consider a problem where only one
variable causes the singularity. In such a case the moves predicted fqr
all other variables would be quite good. Thus, the truncation of the
entire search vector is clearly inefficient in that only the move in the
maverick variable need be truncated. This justifies the need for the
following two operations:

(1) Sorting those variables which cause the singularity in G.

(2) Selectively truncating only the moves for these variables.

More will be said about this later.

The (GN) method is equivalent to the well known Newton-Raphson (5)
(NR) method for equation solving. The (NR) method uses as its basis the

linearization of each equation in the neighborhood of the base point. Thus,

o Doof (xo)
fj(g) = fj ) + igl g-— Axi 3 j=1,2, «eop,n (1-11)
X
i

The move is then determined so that each fj (x) would become zero if all

functions were linear. In vector-matrix form, these relations become

Ax = -f L @(m12)



where

of
J = the Jacobian matrix with J., = i

X,
If equation (1-12) is premultiplied by JT, there results

(3'3) px = - % | (1-13)

which is identical to Equation (1-11). That is,

G =J%3 (1-14)
%3 -JE (1-15)

Equation (1-14) constitutes a proof that G is always at least positive
semi-definite in that this property always holds for a product of a matrix

and its transpose.

I. 4. Scaled Steepest Descent (SSD). It was also shown previously

that the Ax vector given by Equation (1-14) does not, in general, pass
through the minimum of a positive definite quadratic function with
elliptical contours (see Fig. l-1). A Ax vector which must pass through
the solution point is given by Equation (1-7). . If Q is a positive
definite qﬁadratic, thén Equation (1-7) may be solved by diagonalizing

the BZQ/BE? matrix via eigenvalue - eigenvector calculations as follows:

sT 3% ssTax = -sT aq (1~16)

9.2 19X

E —

Now let
sT 3%Q s =D

— (diagonal matrix with eigenvalues (1-17)
X on the diagonals) :
y= STA}E (1-18)



It is easily shown that

Thus, Equation (1-16) becomes
Dy = 3Q (1-20)
9y '

Since D is diagonal its inverse is easily computed and

y=0ptag (1~21)
9y

It is desired now to find a further transformation of variables given by

z =Wy (1-22)

such that

N
|

Z=-3Q (1-23)
9Z

(i.e., z is calculated by unscaled SD)

The reason for desiring such a transformation is that z is a vector which
is a steepest descent vector passing through the solution.

To see what W must be, replace z in Equation (1-23) by y via the
transformation, Equation (1-22). This leads to

Wy = -3Q=-W"23Q (1-24)
oz oy

The second equality is easily proven.

Solving Equation (1-24) for y gives

y=-w23q ' | (1-25)
oy :



Thus, in order that Equation (1-25) be identical with Equation (1-21),

it is necessary that
w2=pt (1-26)
or that

1. .
.
W=D (1-27)

The last operation is legitimate since D and, consequently, W are both
diagonal.

The conclusion here is that if each of the vi are scaled by a factor of

v dii then the steepest descent vector in terms of these scaled variables
will lead directly to the minimum of a positive definite quadratic function.
It is important to note that it is impossible, in general, to scale

the Axi to make the SD search vector pass through the solution. To see

this more clearly, consider a function with contours as shown in Fig. 1-2:

Ry

1

AN %

eéxact ™

‘Fig. 1-2. SD and Exact Search Vectors.



The S-~D direction produces positive values for both Ax, and sz whereas

1
the exact search vector requires Axl to be negative and sz to be positive.
Thus, no positive scale factors exist. It is not proper to use negative

scale factors since the property of truncation convergence would be destroyed.

To see this, consider a diagonal matrix of scales, V. Then Equation (1-4)

would be

Ax = -V 3Q (1-28)

Then the directional derivative
_ T T .
do =(5Q\" dx=-{30),,(2Q (1-29)
dh 3x dh 30X V X '

Thus dQ/dh will be always negative only if V is positive definite. Hence,
each scale factor must be positive.

Thus, scaling the y vector is another means of accelerating the con-
vergence of steepest descent. As long as the eigenvaiues of the second
derivative matrix are positive, the ideal scaling factors given by Equation
(1-27)  can be quite effective toward this end. However, if there is a
large difference in the magnitudes of the eigenvalues or if any eigen-
values are negative or zero, then ideal scaling is either dangerous or
not possible. 1In these situations it has been found that the concept of
scaling the y vector is still useful but must be suitably modified. One

practical means of accomplishing this is given in what follows.

First, consider the definition of a set of scale factors such that

A
Yi/si T %3— ; i=1,2, ..y n ‘ (1-30)
i :



From Equation (1-21) it is obvious that

s, = l/dii _ (1-31)

Absolute scaling is not really necessary but only relative scaling is

required (i.e., relative to the largest dii)' It is therefore convenient
to specify the scale factor associated with the largest eigenvalue as
unity. Then all other scale factors will be greater than or equal to

unity and the relationship for scale factors may conveniently be written

. as

s d
= 11
S_l T (1-32)
1 ii
or,since S, is taken as unity
s; = clll/dii sy i=1,2, ..., n (1-33)

However, if d,. approaches zero or becomes negative then the ideal scale

ii
factor cannot be used. It has been found useful to define non-ideal scale

factors by means of the following scale smoothing equation which is purely

empirical:

_ ] e exo (= 1 1n %1177 : 4. >
In s; = In P |1 - exp ( 1 1n _l}f] ; dii 0

1nP d..
ii

(1-34)

where P = maximum scale factor relative to unity

If d,, <0, s, is set equal to P.
i1 — 1

-11-



Note that Equation (1-34) reduces to Equation (1-32) when dllldii is
near unity. As dii get‘s large, s approaches P assymptotically. 1In
practice a value of P of about 100 has been found to be satisfactory.

The modified, scaled steepest descent (MSSD) procedure may now be outlined
completely as follows:

(1) Select a distance factor h and a base point 50.

(2) Compute ag(x°) and azg(x")
90X sz
(3) Find the eigenvalues and eigenvectors of the second derivative

matrix.

(4) Compute a set of scale factors from Equation (1-34) °

(5) Apply (MSSD) to find the rotated variables, y, as follows:
(a) Set {yl[ =h

(b) Compute for 1 < i < n all remaining Yy relative to yl' as

follows:'
y; = - hsgnf3Q ) | (1-35)
Byl
2 .
Y; = Y84 gg / 3Q ; i=2,3, ..., n (1-36)
y oy

If any element of Equation (2.5-19) exceeds h in magnitude,
it is truncated to have magnitude h.

(6) Perform a one-dimensional search along the vector

x=x +F x | (1-37)

where

X =Sy
F = a scalar parameter (note that this is the same F

as in Equation (1-6).

-]2~-



That is, vary F until Q is minimized.

(7) Update h based on the experience of the one-dimensional search by
applying Equation (1-5).

(8) Go to step (2) and repeat until convergence is achieved, that is,
until either of the following occur:
(a) the change in Q between interations is within a tolerance
(b) the vector F Ax becomes very small

(c) each 3Q becomes neczilibly small.
X,
i

I. 5. Rotational Discrimination (RD) . This method begins with the

. (GN) formula for step size determination given by Equation (1-10) and

repeated below:

G Ax = - 3Q(x) - (1-38)

9x

First, the Ax coordinates are rotated as follows:

sT ¢ ssT ax = - sT 30 %) (1~39)
o
- Letting
p&sTcs . o (1-40)
and
y&s" (1-41)

Equation (1-39) may be written as
Dy = - 9Q (1-42)
9y .

-13-



It is assumed that Equations (1-42) have been ordered such that d,. is the

11
largest positive eigenvalue and each successive dii is algebraically smaller
than the previous.

The (RD) method is basically a tactic for choosing a superior search vector
in terms of the rotated coordinates, y, which exhibit zero local inter-
action. (RD) logic presupposes that reasonable external scaling of the
variables has been accomplished so that the following assumptions are

likely to be valid:

(1) The acceptability of a move calculated by (NM) can be judged from
its length -- long moves are suspect.

(2) 1In the Gauss~Newton matrix, eigenvalues which are several orders
of magnitude smaller than the largest are indicative of a linear
dependence of Q on the associated y coordinate. Negative eigen-
values are associated with those y coordinates for which the
objective function tends to exhibit a local maximum rather than a
minimum.

The (RD) method then attempts to combine the best features of (GN) and
(MSSD) by computing the y vector components discriminantly. That is, if
the (GN) move for a particular ‘A is not too long and if the associated
eigenvalue is positive and not greatly different from dll’ then the (GN)
calculation is used. Otherwise, (MSSD) is»usgd. The complete logic fdr

the (RD) minimization algorithm is as follows:

(1) Select a base point, 5?, and a maximum allowable distance factor h.

(2) Compute 3g(x°) and G.
9xX

(3) Find the eigenvalues and eigenvectors of G. Order D and S of

Equation (1-40) so that the di are in descending algebraic order.

i

14



(4) Starting with y, , the elements of y are computed by (GN) locig, that is

(5)

(8)

(7)

vy F o= %g;fdii (1-43)
untll either
(a) i =n
(b)Y d;; 20
. (e) y; > h

When the (GN) sequence is terminated for reasons (b) or (c) above, at
the kth parameter, then a switch is made to (MSSD) logic. For the
kth parameter, Vi is then assigned a scale factor of 1 and

‘ 30 | .

y. = =~ h sgn(s=—) (1-4y)
k oy

If there are parameters in the list after the kth one, the (MSSD)

sequence is continued until the end of the parameter list is reached.

Thus for 1 = k + 1, k+ 2, .v., 0,

3030

Y. = y.S. (1-y5)
i k1 ayi ayk

The scale factors, s;, are determined relative to Sk T 1 using

Equation (1-34). If any y. calculated by Equation (1-45) is larger
q y ¥y y Eq rg

than h in magnitude then it is truncated to have magnitude h,

If any dii = 0, then that Y; is set to zero, The logic behind this
is discussed in the next section.
The resulting y vector is converted back into a Ax vector by
Ax @ Sy | | . (1-46)
and a one-dimensional search along the vector

x = x° +F Ox . (1-47)

- 15 -



is performed,

(8) The distance factor h, is updated using Equation (1-5) if any
variables have been found by (MSSD), Otherwise, no updating is‘perfopv
med,

(9) Convergence is achieved when either
(a) the change in Q between several successive iterations is within

a tolerance.
(b) F Ax becomes very small.
(c) each %%%— become very small,
i
(d) 1if, for regression problems each Y3 becomés statistically insignificant
(see discussion below). |

If convergence is not met, go to Step (2).

In regression problems, there is no absolute measure which constitutes a solution of
the problem. This difficulty can be overcome by making use of the statistical
nature of the problem. Of particular interest is the estimate of the residual

variance given by

o (1-u8)
It is then possible to define an estimate of the parameter variance as

ol = 0f2/dii (1-49)

i

where

d,, = the ith eigenvalue of the associated Gauss-Newton matrix, G.
With these statistical estimates defined, it is now possible to give modifica-
tions to the (RD) algorithm as just described for regression problems. First,

if a parameter move cannot be " justified on statistical. grounds, then it is

classified as a null effect parameter. That is, if the parameter variance given

- 16 -



by Equation (1-49) is larger than some arbitrary value (say 1.0) and if the
parameter step (y;) as computed by (GN) [i.e., Equation (1-43) ] is less than
the parameter variance then the parameter step is set to zero. Seéﬁnd, the
regression process may be terminated based on the following test: for all
transformed parameters which are not null effect, if the y; < 0.10

vi then the

algorithm is terminated.

I. 6, Singularity of G and Null Effect Variables. The singularity of the G

matrix is usually caused by a phenomenon which shall be called null effect,

Those variables which cause this condition will be called null effect variables.
Null effect occurs when perturbation of a parameter or of some linear combina-
tion of parameters has no significant effect on any of the residuals in the

sum of squares function.‘ Ina well‘posed problem, null effect should not, of
éourse, be present at the solution point. For systems of nonlinear .equatioms,
however, null effect is common at points removed frém the solution. This is
caused by local redundancies or inconsistencies in the linearized versions 6f
the equations. In either case, two or more linear equations become parallel

to each other and hence no solution exists. As an example, consider the problem

illustrated in Fig. 1-3.

xl N

X
X

Figure 1-3. TIllustration of null effect
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I. 7.
has been written

solving calculations using RD logic.

Rules for Using Subroutine RDRG. A FORTRAN IV subroutine named RDRG

which may be called to perform the regression or equation

The necessary rules for calling the sub-

routine from a main program or other subroutine are given below.

The basic characteristics of the system are as follows:

1)

2)

3)

4)

5)

)

The user sets up arrays containing starting values and scaling factors
for the parameters being sought, and then starts rotational discri-
mination action by the appropriate subroutine call,

Thereafter, until the iterative procedure is terminated by the
subroutines, the values contained in the parameter array are

under control of the subroutines. The user must provide programming

to calculate residuals for the data points or equations for any set

of values in the parameter array, on demand by the rotational‘discri-
mination algorithm.

When control is released, the parameter array will contain "best"
values, i.e., those which cause the sum of squares of the errors to

be a minimum. |

In the form provided rotational discrimination operates as a restrained
minimization élgorithm -- limits are recognized for parameter values.
In its standard form, rotational discrimination obtains partial deri-
vatives of the residuals automatically by numerical differentiation.

There are no arbitrary internal limits on the size of problem due to

dimensioning, etc. The standard version requires approximately 9,000

words of 7044 core storage for program decks, plus the additional

space necessary to hold internally generated arrays. As a general rule,

problems invol&ing up to about 70 parameters can be handled on a 32K

7044,

- 18 -



7) Nesting, e.g., using these programs as part of the calculation of

residuals to be used by these programs, is permitted only if the user

follows certain procedures to insure self~protection,

8) No special system features are required, Floating point numbers in

intermediate output are produced by 1PE format.

g) Large problems (e.g., more than 40 parameters) may cause the regression

subroutines to make use of scratch storage on two utility units. -

Normally tapes 1 and 2 are used, however, alternates may be designated.

10) This system can be used in a chained job, provided certain minor limitations

on overlay are observed.

I. 7.1 Programming for all-FORTRAN-IV Usage. A skeletal illustration of a

program which meets the basic requirements for all-FORTRAN normal usage is shown

below:

5

6

10 CALLRDRG (S,SX,DER2,D2QX,XX,MgDE,DERL,DXBAR,DXX,DQ,DQX,DY,DY(KBASE),

DIMENSI@N X(..), SCALE(..), Y(...), T(...), XMIN(C...), XMAX(...),MPDEX(...),
D2QX(...)

DIMENSI@N S(..), SX(..), DER2(..), XX(..), M@DE(..), DER1(..), DXBAR(..),
DXX(..), DQ(..), DQX(..), DY(..), D2Q(..), SCALR(..)

DIMENSI@N XSTART(135)

C@MMPN /REGCEM/ C@M(12), KC@M(22)

EQUIVALENCE (KC@M(5),IC@DE),(KCOM(7),IPT)

X() =

SCALE( ) = ‘ (Put values in X, SCALE, XMIN and XMAX arrays) \
XMIN(C ) |
XMAX( )

CALL REGTAP (NUNIT1, NUNIT2)

CALL REGSET (NPT,NV,IPRINT,MAXCNT,TIMAX,KTAP,KBASE)

X,SCALE,XMIN,XMAX,D2Q,SCALR,MPDEX, XSTART ,DELTA)

- 19 -



11 IF (XC@M(5).EQ.0Q) G@ T® 10Q

" DELTA =
G@# T¢ 10

100 ..... ' (Regression or equationasolying finished)
Statements 1, 2 and 3 established dimensioning for arrays required by
the subroutine system. Miﬁimum space requirements for all ofbthese, except DY,‘are
outlined below. NVMAX is the maximum number of parameters expected in anyvuse
during the job run.

S, SCALE, MODE, DER1l, DXBAR, DXX, DQ, DQX, D2Q, SCALR, XMIN, XMAX, INVMAX
M@DEX,

S, SX DER2, D2QX  H(NVMAX) 2
Y, T INPTMAX
XSTART must always have dimension 135.

The regression (or equation-solving) calculation is initiated by calling
subroutine RDRG, statement 10. However, prior to this call fiig things must
have been done:

1) Put starting values (initial guesses) for parameters in X array.
Also, the lower bounds and upper bounds must be put into the XMIN
and XMAX arrays, respectively. .

2)  Put scaling factors for parameters in SCALE array. (Suggestions
concerning choice of scale factors for parameters are presented

in Section I.7.2.)

Notes: NVMAX = maximum number of variables in any call

NPTMAX = maximum number of data points

Array of dependent variable data points (there could be a Yl Y2,etc.)
L]

Array of independent variable data points

DELTA = (Calculated Y - data Y) for the IPTth data p?int and the present

values in the X array.

- 20 -




3) Designate scratch utility units by calling REGTAP (statement 5).
Arguments NUNIT1 and NUNIT2 are FORTRAN utility numbers. If
scratch utility storage is not to be used, these arguments
should be zero.

4) Set other required internal constants by calling REGSET (state- .
ment 6).

5) It is convenient to equivalence KC@M (5) to IC@DE and KCgM (7)
to IPT.

The values for NPT, NV, IPRINT, MAXCNT, and TIMAX are constants selected by

the user:

NPT = Number of data points to be used in a regression. In an
equation~solving problem this is the number of equations
to be solved. In general, it is the number of error terms
whose sum of squares is to be minimized.

NV = Number of unknown parameters to be sought in the regression
of equation-solving problem, e.g., the number of elements
.in the X (and SCALE) array. In an equation-solving
problem NV and NPT should be equal.

IPRINT = Internal print control (see Section I.7.3)

MAXCNT = Maximum allowable number of iterations based on fresh derivatives.

TIMAX = Maximum allowable time (minutes)for regression.

MAXCNT and TIMAX should be chosen® to prevent excessive "spinning." Argument

ota

®* It is extremely unlikely that more than 20 iterations will be required
unless the problem is very poorly formulated. The "average' problem requires
5. Time requirements depend on the complexity of the residual calculation.
However, as a rough guide, typical times have varied from 0.05 minutes for a
2 parameter problem to one hour for a 70 parameter problem. Note: The time
limiter depends on subroutine TIMEX, which is provided in dummy form. An
active TIMEX must be provided if the TIMAX parameter is to be of significance.

- 21 =




KTAP should be zero for standard usage. Argument KBASE is an index computed
by REGSET for use in the call of RDRG.
The dimensioning required for array DY, depends on whether utility storage

is used to reduce core storage needs:

No Utility Utility
Storage - Storage Used
Minimum DY dimension (NPTMAX) * (NVMAX+4) NVMAX+4

NPTMAX is the maximum number of data points (or equations) expected in any
use during the job run.
The action required after return from subroutine RDRG depends on the value
given to (IC@DE) by the subroutines:
When IC@DE = 0, the subroutines have completed their operation
and the calling program can proceed (statement 100). If a normal
finish was obtained, KC@M(8) will be returned as zero. At this péint
the X array will contain the parameter values corrésponding to the problem
solution, and the final sum of residuals squared will be in C@M(9).
Non-normal finishes are indicated as described in ection I.7.4.
When IC@DE > 0, the callingprogram must calculate the value of the residual
for the IPTth point (or equation) and place this value in DELTA. The
calculation must be made using the values of the parameters contained

at that moment in the X array. Then the subroutines are returned to

Note: For equation solving an additional subroutine, REGC@N, must be called im-
mediately following the call of REGTAP. The call should be made as follows:
CALL REGC@N(2.0,T@L, 0.0, 0.001, 0.05, 0.2, 10.0,2.0,1) where T@L = toler-
ance on sum of squares. That is, when C@M(9) < T@L, the calculations will

be complete. A value for TPL of about 10-10 for well-scaled equations
is recommended.
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action by going back to the call of RDRG.

If it is desired to start another regression, constants should be reset

by calling REGSET before the initial RDRG call.

I. 7.2 Selecting Scaling Factors for Parameters. Scale factors for the

parameters must be placed in the SCALE array prior to the start of the RD process.
These factors are used by the RD subroutines in calculating parameter increments for
numerical differentiation, and as an assist to the.RD logic in choosing the optimum
search trajectory in the parameter space. It is strongly recommended that care-
ful thought be given to their selection.
The initial numerical differentiation step uses as parameter increments
the parameter scale factors multiplied by a constant, FDERIV, which is normally
0.001, Ideally, these increments should cause an average change in the residuals
which is noticeable in the last 3 or 4 significant figures. Thus, as a first
rule for obtaining scale factors:
1) Estimate the parameter increment size which will produce typically a
residual change in the last 3 or 4 siénificant figures.
2) Divide this increment by FDERIV (0.001).
A second possible rule, which may be useful in some regression problems, is
based upon the null effect parameter analysis which is built into RD logic.
This logic prevents statistically insignificant changes in parameters when
the standard deviation of estimation for the parameter exceeds a constant,
FDSCRD, times the scale factor. TFDSCRD is.normally 1.0. This rule for scale
factor selection may be constructed as follows:
1) Estiﬁate the standard deviation of estimation for a paréﬁeter,
assuming all other parameter values known, which would make modifica-
tion of this parameter value by regression meaningless.

2) Divide this standard deviation by FDSCRD (1.0).
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The above rules will usually suffice for choosing parameter scaling factors
in problems for which the parameter values either have physical significance or
are known in advance to lie within a certain range.

I. 7.3 1Internal Print Control and Debugging. The call of REGTAP always produces

a line of output which indicates the utilities used for temporary storage, if
any:
UTILITIES XX AND XX USED FOR TEMPORARY STORAGE
The RD subroutines brought into action by the call of RDRG furnish consider-
able information about operation during use if the contained print statements are
not suppressed. Suppression can be accomplished by setting IPRINT=0 in the call

of RDRG. ‘A limited amount of printing is obtained if IPRINT=1. However, when

new problems are run, it is strongly recommended that the complete intermal

print facilities be used by setting IPRINT=2. The reason for this is that the
output thus obtained is extremely useful in debugging the problem setup.

Typical examples of output are shown on the following pages. The sequence

is as follows:

1) Heading line

2) Table of starting values & scaling factors for parameters

3) Table of controls (NVAR = number of parameters being solved for, NCASE =
number of residuals)

4)  Special option list

5) Tteration number list

6) Parameter, Internal variable table

7)  Comments

8)  SRCHS (one-dimensional search) table

9) Termination explanation
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When IPRINT = 2, items 5 through 8 are repeated for each iteration. For
IPRINT = 1, these are produced only for the last iteration. *
The special option list contains the following two lines.
NO SHORTCUT ON JACOBIAN
BASE CASE RECALCULATION SKIPPED
The items in the Iter No line are as follows:

ITER NO M/N M is a count, starting with zero, of the number of
iterations in which the determination of a search vector was based
on a fresh evaluation of derivatives. N is set to zero when such an
iteration is currently in progress. N is incremented by one for
each iteration which does not base its search vector on fresh
vderivatives, in a sequence following an iteration which does
evaluate derivatives. Thus 3/2 under ITER NO means the second
iteration without derivative reevaluation following the fourth
iteration which did involve derivative reevaluation. Iterations
without derivative evaluation are used only in the accelerated
mode, which is indicated in the special option list by the line:

SHORTCUT ON JACOBIAN

INACTIVE This number indicates how many '"null effect parameters"
have been identified and are not being used as variables in the
current iteration. Additional information is furnished under
INACTIVE pertaining to paraméters at their limits.

DERIV This number indicates the nature of the differentiation

process used by RD the last time derivatives were obtained:

2 - Numerical by central differences
1 - Numerical by forward differences
- 25 -



DIST This is the distance of the desired first try along the search
vector, in a scaled parameter space. Thus, if the search increment
vector is Axl, AX2, ..., and parameter scale factors are S1s Spseees

DIST is equal to

2
\/ Z(AXi/si)

FSD This is the current value of the steepest descent distance factor,
used by RD logic as the maximum acceptable increment for any
coordinate in the scaled, rotated space.

SIGMA This is the current value for the sum of residuals squared.

Under PARAMETERS are three columns giving respectively the parameter

number, the current value of the parameter, and the parameter increment cor-
responding to the desired first try along the search vector.

Under INTERNAL VARIABLES are four columns, all referring to the coordinate

system obtained after rotation (X):

a) The Gauss-Newton matrix diagonal:

L, (ayr/aii)z (y, = rth residual)

b) The partial derivative of the sum of squares:

3Q/3X;

c) The coordinate increment cdrresponding to the desired first try along

the search vector.

d) The mode of computation for the coordinates:

0 - Gauss-Newton
1- Steepest Descent
2 - Truncated Steepest Descent

-1, -2 - Not incremented (null effect)
The Iter No line and the Parameter, Internal variable table are printed in

the middle of each iteration after a search vector has been determined, but
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. before the search has been started. If the search is conducted, the next out-

put will be the SRCHS table, containing three columns:

a)

b)

c)

The factor multiplied by the search vector increment to

obtain a trial point. One is printed for each point tried.

TRY @PTIM
NG, ST@P
CUT ST@PPED
CUT

OPTIM @K
TAKE BEST
TAKE PREV
TRY M@RE
QUIT @N PREV
QUIT @N LOW
REVERSE

N@ G@

N@, TRY MORE

TAKE

One of the following comments, indicating the subsequent action to

be taken by the one-dimensional search subroutine (SRCHS):

The value for the sum of residuals squared corresponding to the FX value.

(The initial value in the column is for the base point, FX = 0.)

The final value in the FX column is the one accepted to determine a new

base point.

Instead of proceeding with the search, the iteration may be repeated, with

a preliminary line of explanation:

CONVERTED TO CENTRAL DIFFERENCES (Numerical differentiation is to

- 27 -



be repeated using a central difference rather than forward
difference method - this will not cause a change under ITER No.)
The RD program may terminatg operation of the problem at this point, with
one of the following lines of explanation:
R.D. FINISH N@RMAL
R.D. HAS REACHED MAX NUMBER @F ITERATI@NS
R.D. TERMINATED DUE T@ LAST STEP BEING ABN@RMALLY SMALLV

Termination may also occur at the end of the search, after printing of the

SRCHS table, with the line:
R.D. TIME LIMIT EXCEEDED
Further explanations of termination are given in Section I.7.4.

The nature of errors in problem setup can frequently be determined by an analy-
sis of the internal output furnished by the RD programs. Following is a suggested
scheme for analysis.

1) Examine the tables of starting values, scales, and control parameters

to see that this information has been transmitted correctly to the RD
subroutines. Note particularly that NVAR = number of parameters to be
solved for, and NCASE = number of residuals.

2) Check SIGMA. A zero value for SIGMA in the first iteration line usually
means the residual calculation is fouled up.

3) Check the first column under Internal Variables. These are the eigen-
values of the Gauss-Newton matrix. If all are zero, the derivative
calculation is not responding to parameter changes. Very small numbers
here, with corresponding -1 or -2 in the right hand column, indicate
null effect parameters, which may reflect difficulties in the probplem

setup.
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4)  Check the ACTI@N column in the SRCHS table. Any of the following
occurring on an iteration where M/N under Iter NO has N = 0 is
indicative of trouble:
N@, TRY M@RE
NG G@
REVERSE
CUT ST@PPED
Possible sources of trouble are "noise'" in the residual evaluation,
or overwriting of computer values due to inadequate dimensioning in
the using program. "Noise" usually manifests itself only as the sq—‘
lution is approached.
If an equation-solving application fails to yield a suitable low value for
the sum of residuals squared, the last iteration should show at least one.very
small number in the first column under INTERNAL VARIABLES. This indicates that
a non-zero minimum has been reached -- either a solution to the equatiéns does not
exist, of it cannot be reached from the starting point'used.

I. 7.4 Types of Finishes. Completion of solving action is indicated by return of

IC@DE, as 0. The reason for termination is indicated by the integer value

. |
placed in the element KC@M(8) in named common REGC@M according to the following ‘

table: |
KCoM(8) - TERMINATION REASON »
0 Nofmal finish - all convergence requirements
satisfied.
1 Maximum number of iterations using fresh derivatives |

has been completed. This maximum number is specified
to the solving subroutines by the 4th argument. in the

call of REGSET, MAXCNT.
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2 Time limit has been exceeded. This limit is
specified to the solving subroutines by the
5th argument in the call of REGSET, TIMAX.
3 Frustration finish -- all convergence requirements
not satisfied, but progress has slowed to less
than tolerable limits.
A XCPM(8) signal of 0 (normal finish) indicates that the answer should be
completely satisfactory'in all respects. A KCPM(8) signal of 3 (frustration
finish) indicates that no further meaningful reduction .in sum of squares is
possible, but the parameter values either do not satisfy all requirements or
could be significantly refined further by additional (probaﬁly excessive) com-
putation time.
When KC@M(8) signals of 1 or 2 are encountered, a best solution has not
as yet been reached, due to arbitrary interruption by time or iteration count
limits. Such interruption could be prevented or delayed by using larger limit.
values for MAXCNT or TIMAX.
Frustration finishes are usually caused by one of three situations:
1) An equation~-solving application in which solution is impossible, or
prevented by hanging up at a minimum in the sum of squares other than
Zero.

2) '"noise" in the functional evaluation.

3) Regression involving several paraﬁeters not clearly defined by the

data.

The first of these situations always produces at least one null-effect variable,

recognizable as a MPDE of -1 or -2. There is no point in forcing further RD

action from the same starting point.
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Situation (2) is usually recognizable as indicated in diagnostic item 5 in

- Section I.7.3. The best remedy is to repair the functional evaluation.

Situation (3) is usually recognizable from the presence of several variables
still in steepest descent (M@DE 1 or 2) at exit.

A frustration finish will also usually occur if one attempts regression on
data which give an exact fit.

I. 7.5 Calculating All Residuals For The Same Parameter Vector at The Same

Time. In some instances it may be desirable to calculate all residuals for the
same parameter vector before proceeding to the next parameter vector. Since the
normal request sequence involves covering all parameter vectors before moving
on to the next residual, this tactic is best accomplished by doing all the residual
evaluations while the regression subroutines are requesting only the firét
(IPT=1), and storing for recall. The following skeletal program illustrates this
procedure, with the residual values stored in DARRAY:
DIMENSI@N DARRAY(..,..)
10 CALL RDRG....
11 Ir (IC@DE.EQ.0) G@ T@ 100
IFr (IPT.GT.1l) G@ T@ 30
D@ 20 I = 1,NPT
20 DARRAY(I,IC@DE) =
30 DELTA = DARRAY(IPT,IC@DE)
Gp T 10

loo e 0 0 80
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As before, in an all-Fortran system ICODE, INEW, and IPT would be replaced by
KCoM(5), (6), and (7). The minimum dimensions’ for DARRAY are NPT x (2%NV+1).
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II. Adaptive Model Development Using Time Domain Data

II.1. Summary
A technique has been developed for model updating or identification cast
in the time domain. .This presented technique uses dynamic time domain input-

output data to find a linear constant coefficient second order system which best

‘represents the data in a least squares sense. It incorporates rotational

discrimination for the nonlinear regression analyses.

I1.2. Mathematical Development

II.2.1 The Simulated Model

For a general linear second order system disturbed by an exitation E

for a time duration t, the following ordinary differentiation equation (0.D.E.)

~

may be written:

2352
I__q_l-p QgT_(ll+y
dt2 dat

E(t) : (1)

where:

«
]

Dependent output magnitude

t
It

Independént time

T O System time constant

§ = system damping ratio
In the formulated technique, the exitation E of the system was obtained

as a function of time by approximating E(t) with straight line segments of the

form

E(t) = ci(t-ti) +d, | (2)
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where
t, = time at the beginning of the ith interval
c; = slope of the exitation in the time interval
t, <t < t., +4t,
i—-"="1i i
d, =

L intercept of the exitation in the same time interval
This approach is called the piecewise linear approximation (PLA) method. The
At intervals are not necessarily equal and should be chosen so tlat approximate

representation is reasonable.
The eigenvalues of the characteristic equation of Equation (1) may. _

be of three types depending uponfg‘ For each type, respective solutions may.. -

be calculated as follows for t, <t <t

+ At,
1 i

1) Solution of (1) with complex eigenvalues (£<l.)

e(ss)t

y(t) = [(P-B)cos(RR)t + ¢, sin (RR)t] + At + B (3)

and

dgit) = (SS)e(SS)t [(P-B)cos(RR)t + cl.sin(RR)t] + A+

(S8t _pr(P-B)sin(RR)t + (RR)e, cos(RR)t] (1)

where:

SS

Real part of eigenvalue
3

T

2

Complex element of eigenvalue '

(YI-E?)

T

-34=



2)

and

where

3)

and

where

_ Q-A-SS(P-B)
17 RR

Q = Derivative of respomse at t;

P = Response y at ti
A = Slope of exitation approximated by P.L.A. = c,;
B =

Intercept of exitation by P.L.A.
2rEA

Solution of (1) with multiple eigenvalues (£=1.).

Dlt D,t

y(t) = (P-Ble "~ + D, (B-P)-A+Qlt e 1° At + B (5)
dzéz) = D,(P-Ble 1'+D1[%ﬁ3'P)-A+Q]t o 1 +0D_(B-P)-A+Q]
D.t
e 1 + A , . (6)
_1
by ==

Solution of (1) with real and distinct eigenvalues (¢>1.0).

[Q-A+D. (B-P)] Dt Q-A+D1(B-P) Dt
y(t) = {P-B'I-' D* D “ohe + [—-T)-_D-_ le + At + B (7)
1772 271

' [Q-A+D,(B-P)] D.t Q-A+D, (B-P) Dt
dy(t) _ =1 1 1 2
—(Xi-t—_ =D, { p-B+ DD }8 + D2[——————D i Je © + A (8)
172 : 271

D.= € + Vg ~I

1 T 1
D2:,_ % - /TTE_

T
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These Equations (2-8) were incorporated into the simulated model of a

linear constant coefficient second order system with parameters r and &-
With these parameters given, and the exitation E given by P.L.A., a complete

response profile was generated and used to back identify parameters, namely

T and £.

II.2.2 The Adaptive Model Generator Program for Linear Constant Coefficient
Second Order Systems.
This package identifies the parameters of the candidate system or model.
Input-output response data taken from the actual system are used as input data

for this program. The program then, through nonlinear regression analyses,

determines parameters T and . & based on the minimization of

the sum of the sguares of the differences in the output of the actual system
and of a simulated second order model. This difference is defined as a "residual."
1) Use of program 2141 M and subroutines 214l1A and 2141B.
a) Function of and definitions of parameters in program 2141M
not including those set for R-D.
Program 2141M is the main program of . . this algorithm.

This subroutine reads in the exitation magnitudes, exitation times, number of
exitation data points, response magnitudes, respoinse times, number of response
data points, initial guesses for parameters, and number of parameters. This
subroutine also calls rotational discrimination for regression and related
subroutines. Definitions of variables are | |

N

number of coefficients

M = number of response data points

NM = number of exitation data points
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X0 = initial guesses for coefficients (v andg)

Y = magnitude of respanse
T = output time
E = magnitude of exitation

TT = input time

b) Function of subroutine 2141A (SEC(RD).
This subroutine furnishes to the main program residuals
whose sum is to be minimized. These residuals are named DARRAY (IPT, I CQDE)

in this subroutine and are the only output from this subroutine.

c) Function and output explanation of subroutine 2141B (PRINTD).

Following the identification of the candidate model, the regression will
terminate. Regressed valves for 1 amdf will be given and eigenvalue type will
be stated. A complete response profile of the candidate model will be generated
and printed at the same response time intervals. as were read into the program.
Residuals will then be provided along with the sum of the‘squares of the
residuals. Tables I-A, I-B, and I-C give example information for all possible -

eigenvalue types

TABLE I-A
R Tau Eta
Actual Parameter Values 1.0 .1
Starting Parameter Values 1.4 .21
Calculated Parameteeralues .999994 .100007

~ Number of iterations = 5

Sum of squares of .residuals = .593 x 10710

-37~- .



TABLE I-B
Tau Eta
Actual Parameter Values 1.0 1.0
Starting Parameter Values 1.2 - 1.2
Calculated Parameter Values 1.000001  '.999999

‘Number of iterations = 4

Sum of squares of residuals = .147 x 10 °%
TABLE I-C

Tau Eta
Actual Papameter Values 1.0 2.0
Starting Parameter Values 1.10 2.20 E
Calculated Parameter Values 1.000005 1.999991
Number of iterations = 3

11

Sum of squares of residuals = .184 x 10
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III. Adaptive Model Development Using Frequency Domain Data

N

III.1. Summary

.Thisvsection presents an algorithm developed for model

identification in the frequency domain. The algorithm makes use of general

" Bode diagrams taken from a simulated linear constant coefficient second

order system. Two options are presented in that phase angle data may or may

not be utilized as supplemental information in updating or identifying candidate

models. It has been found that phase angle data can be of significant value in

more accurately updating or identifying candidate models. Rotational discrimipation

is used in the nonlinear regression analyses.

II1.2 Mathematical Development

The algorithm for adaptive model development utilizing complete Bode
diagram information for a linear constant coefficient second order system may be

formulated using the unique relationship between time domain error and frequency

domain error as shown by Schnelle (2). That is

-4

e

n
It 0~
ne~—1=

2
y (Y.. - Zoh)
all data i=1 1M 3 , (1)

sets L. L

ol
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where

M = the number of discrete time points

N = the number of output variables of the system

Yij the value of s at the jth discrete time level

Zij the value of z, at the jth discrete time level

is equivalent to

P
.Z [(Gikcos eik - Hik cos ¢ik)
1 j=1

yr 2

"
e~

all data i
sets

(2)

. . 2
+ (Gik sin eik - Hik sin ¢ik) ]

Note: Data set in the time domain is defined as Zi for one test or
experiment corresponding to a particular value of time. Data
set in the frequency domain is defined as Zi for one test or

experiment corresponding to a particular value of frequency.

-40-



where

P = the number of discrete frequencies considered

eik = calculated phase angle for the ith variable at the kth frequency level

¢ik = data phase angle for the ith variable at the kth frequency level

III.2.1 Formulation of adaptive model development using only magnitude ratio
data from the bode diagram (programs 2111M, 2111A, and 2111B).
The magnitude ratio and phase angle for a linear constant coefficient

second order system are given by

1
Magnitude ratio = (3)
v{1l-w%t4)< + (281w)“

-2ETWw

and phase angle = tan T (_—TZﬁ:Fr ) (W)

1

These may be obtained from the transfer function

. G(s) = 1 ,
%8 + 287 + 1 ) (5)

In equations (3) and (%), T and § are parameters with w being the
frequency. Utilizing equation (3) only and rotational discrimination as the
regression algorithm, a complete program for updating or identifying candidate
models was formulated. Various Bode diagrams of second order systems have been

investigated. and candidate models have been generated by the proposed procedure
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in test cases. Among these test cases was a model with complex distributed

parameters.

It should also be pointed out that a gain factor has been incorporated
into this algorithm as an additional unknown parameter.
1) Function of and definitions of parameters in program. 2111M not
including those set for R-D.

Program. 211M is the main program of this algorithm. This
subroutine reads in the magnitude ratios, frequencies, number of data points, initial
guesses for parameters, and number of parameters. This main program- also
calls rotational discrimination for regression and related = subroutines.

Definitions of variables are

N

1

actual number of coefficients

M

actual number of data points

X0 = initial guesses for T » & . and the gain respectively

Y = magnitude ratio
Z = frequency.
2) Definitions of variables and functions of subroutine 2111A.

This subroutine furnishes the residuals to program 2111M

used in the regression algorithm. This is the only output of subroutine 2111A.
3) Definitions of variables and function of subroutine 2111B.

This subroutine is a post-regression program which furnishes
information concerning the regressed function and parameters. Amorg this infor-
mation are the regressed values of 1, £ and the gain of the.candidate system.
Next, magnitude ratios are calculated and printed. A magnitude is printed at

each input frequency. Other information includes the magnitude ratio differences
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between the candidate system and the simulated linear constant coefficient second

order system. Note furthur that in subroutine 2111B, a normalized sum of squares

is calculated. This sum of squares .may give insight into the regression for

- gains much less or much greater than one.

III1.2.2 Formulation of adaptive Model Develobment Using All Available Data From

the Bode Diagram (Programs 2121M, 2121A, and 2121B).

The major difference in model development using all bode diagram

data and only the magnitude ratio is that there are two (2) sum of squares terms a
the function to be minimized. This is seen in Equation (2) and leads to no
particular problem. The RD regression programs can easily handle this situation.
The magnitude ratio and phase angle for the simulated system are given in Equations
(3) and (4). With these equations and Equation (2) the required
residual may be obtained.

In this case, with the phase angle data being considered, the regression
produced . better parameter values for 1, £, and the gain in test cases.

1) . Function of and definitions of parameters in program 2121M not
including those set for R-D.

Program 2121M is the main Program in this algorithm. This
program reads .. . in the magnitude'ratios, phase angles, number of data points,
frequencies, initial guesses for parameters, and the number of parameters. This
subroutine also calls rotational Discrimination fof regression and related
subroutines. Definitions of variables are

N

actual number of parameters

M

actual number of data points
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X0 8 Initial guesses for coefficients or parameters
Y = magnitude ratio
ANG = phase angle -in degrees

Z = frequency

2) Definition of variables and function of subroutine 2121A.

The function of this program is identical to that of subroutine

2111A as explained in Section III.2.1.

3) Definitions of variables and function of subroutine 2121B.

The function of this subroutine is comparable to subroutine
2111B. Subroutine 2121B adds additional information in that phase angles are
calculated and printed as are the magnitude ra‘cn}os.

IIT.2.3 Extension of this technique to a linear constant coefficient with order

system.

The transfer function for this general system may be written as

G(s) = =
aNSN + aN—l sN—l + al s+ao . (8)
This gives a magnitude ratio of
1.
Mag. Ratio = 5 T (N
. . a 4
aN(jW) +aN_l(jw) Foeent ljw-rao

and a phase angle ©of

T




P.A. =<[ N L : ] (8)

. . (N-1
a a 4 a
..aN(jw) +,N_l(]w) +o.otd Jutd

1 0

Here parameters include the ai‘s. The basic theory behind the formulation
of a set of residuals whose sum is to be minimized depends upon Equations (2),
(7), and (8). No programs are provided for this. However, they ould easily
be generated if a model of higher order is believed necessary.

The following tables give example information produced by the programs

described above.

TABLE II
MAGNITUDE RATIO DATA ONLY
Tau Eta Gain
Actual parameter values 1.0 .1 1.0
Starting parameter values .98 4 .89
Calculated parameter values .99989 .08976 .99814
Number of iterations = 7
4

Sum of squares of residuals = .46 x 10

TABLE III

ALL BODE DIAGRAM INFORMATION

Tau Eta Gain
Actual parameter values 1.00 .10 1.0
Starting parameter values : .98 40 .88
Calculated parameter values .999952 .099885 .999362
Number of iterations = 7
i

Sum of squares of residuals = .983 x 10~
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Iv. Reduction of Pulse Test Data to Frequency Response Form.

Iv.1l Introduction

The utilization of pulse testing procedures to experimentally determine
system frequency response has become established as an efficient technique.
The purpose of the investigaiton reported here was to compare two commonly used
procedures for reducing experimental pulse test data to Bode diagram informaton.

The two methods were compared for the case of a second order system, both with

and without superimposed noise.

IV.2. Mathematical Development

For a process having the system transfer function G(s), the

response to an arbitrary input Fi(S) is

Fo(s) = G(s) Fi(s) (1)

where Fi(s) is the Laplace transform of the input, and P, is the

Laplace transform of the system response. Thus, applying the definition of the

Laplace transform, and using s=jw, equation (1) leads to

fo(t) e_jwt dt
0
6(jw) = — (2)
£, (1) o 39t 4t
Q

Pulse testing procedure involves using a finite pulse of limited duration to be
applied as the input fi(t) to the system. From the time histories of input pulse

fi(S) and the response or output pulse fo(t), equation (2) can be used to

46—



determine the system dynamics.*

In this paper a "pulse function" is defined as a function, having arbitrary
shape, that is zero at time zero, and assumes definite values for a finite length
of time referred to as the pulse width T, after which it returns to zero and

remains there indefinitely. From this definition it follows that Equation (2)

can be rewritten as

G(jw) = JT (3)

An important advantage pf pulse testing over other experimental procedures is
that the data obtained from a single well-designed pulse test can be used in
Equation (3) to obtain the transfer function G as a function of the frequency
w. Conversion of the complex number G(jw) to polar form then ylelds the
information from which a Bode diagram can be developed. Applying the identity
e—jwt = cosf{wt) - j sin(wt)

to both integrals in Equation (3) and reducing the. results algebraically gives

the magnitude and the phase angle of G as

§ Ao2 * Bo2 1/2
\ G = [-—2—"""'"2‘] (4)
A.” + B. i
i i
-1 AoBi - AiBo
<G = tan [ ] (5)
AA. + B B.
o1 o i

Te

w

Both fi(t) and £_(t) are actually assumed to be deviations from the steady state.
, o e . —



where . T

A =] f(t) cos(wt)dt (6)

o

T
B = £(t) sinl(wt)dt : (7)

The computational problem, then, is seen to.be that of evaluating the
integrals A and B, given f(t), for both input and output functionms. Si.nce
fi(t) and £,(t) are obtained experimentally, their values are often known only
at some set of discrete points between time zero and the respective pulse
widths. Thus, a numerical method must be used to evaluate the integrals
A and B.

Various numerical methods have been applied to this data reduction
problem. Some of these, including the two used in this investigation,
are discussed in papers by Clements and Schnelle (1) and Lees and
Dougherty (2). In this investigation, two éommonly used methods were
compared under various circumstances.

The first of these is the application of the trapezoidal rule to the
product functions that constitute the integrands in (6) and (7). 1Imn this

case, the integrals are represented as

a o= 27 ™ costr) + BRI () cos (e, )]
=1l
[tk+l—tk] : (8)
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N-1

B = %E =% (e) sin (ut) + £ (o)sin(ut, )10 1 (9)

-t
K=l k+1 "k

where N is the number of discrete points at which f£(t) is known, and
f(k)(t) is the kth discrete value of f(t). It is assumed that

fl(t) o fN(t) =0
t. =0, t, =T

The formulas (8) and @) do not require constant time interval sizes.

A major shortcoming of the trapezoidal rule is that the product
curves £(t) sin(wt) and £(t)cos (wt) oscillate with incrasing frequency
as w is increased. Thus, the approximation of these product curves will
eventually deteriorate at some frequency, above which the results will
be of no value.

The second method considered in this study will be referred to as
piecewise linear approximation (PLA). It consists simply of approximation
of the original pulse curves with straight-line segments, followed by
analytical integration of the products of the approximations times sin(wt)

and cos(wt). The working formulas for A and B in this case are

‘N-1

N-1

A = %- Z [f(ktl)sin(wtk+l)-f(k)sin(wtk)]+£§' Z Sk[cos(wtk+l)—cos(wtk)]»
k=1 ~ we k=l
N-1 N-1

pe -2 %o, e eostur )2 25 [ sy lsintiry ) )-sintwr )] (11)
k=1 . w k=1

. - ) 09

k t - T ( 12)
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The comments directly following Equations ( 8) and ( 9 ) apply to these
formulas as well. An obvious advantage of the PLA method is that the
accuracy of the results will be independent of the value of w.

The procedure for comparing the two methods described above required
generating discrete values of the functions fi(t) and £, (t) without noise,
and with two levels of superimposed Gaussian noise, using a digital computer.
Two types of input pulse were used: a ramp function and a displaced

cosine, defined respectively as

t/T, °o<t<T,
£.(0) = { s T (13 )
- 1
27t 0 <t <T,
l-cos —T—' - - 1
fi(t) = i ( 14)
0 t > T,
- i
. The general second order transfer function
15
6(s) = —— ¢ 1)

1252+2£Ts+l

General expressions for f (t) were derived for each case. The criteria for

the selection of the pulse width Ti and the number of discrete points N

at which the functions fi(t) were evaluated are developed in section IV.5.
The procedure, then, consisted of using‘generated values of'fi(t)

and f£,(t) to estimate the magnitude |G| and the phase angle <G, as a ®

function of frequency, by both trapezoidal integration and PLA. The two

methods were then compared by observing the relative accuracy with which

the true magnitudes and phase angles of ( 15) were reproduced over a range

of freguencies.
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Iv.3 Results

The results of this study are now presented. Several conclusions can
be drawn from the magnitude results. The most obvious observation is that
the results obtained with trapezoidal integration begin to deviate quite
badly from the true values at a frequency of about 2. Since the pulse
widths of the inéut pulses, for both the ramp and the displaced cosine
pulses, are about 2.5, this frequency corresponds to a sinusoid with a
period slightly larger than the pulse widths. The maximum frequency
¢considered corresponds to a sinusoid with a period slightly shorter than
one-half of the pulse-widths. This deterioration of the results of trapezoidal
integration is obviously due to the oscillation of the product curves
f(t) sin (wt) and £(t) cos(wt) that was alluded to earlier.

A second observation is that, except for a few points, the results obtained
-with PLA are significantly more accurate than those obtained with trapezoidal
integration. In addition, the PLA results do not deteriorate significantly
with incfeasing freqﬁency over the frequency range considered.

It was rather surprising to find that, with both 2 and 10 per cent
superimposed noise, theré are several points at which the PLA method gave
more accurate valﬁes than were obtained with no noise. The explanation for
this is that the PLA method has an inherent bias that is, to some extent,
"wiped out" by introduction of random derivations from the true curve. The
results at both noise levels show that, in general, noise does not have an
overwhelming effect on results obtained with the PLA method. The final
observation is that, in both cases without noise, trapezoidal integration
seems to give significantly better results than the PLA method for the first

five points. No explanation for this anamoly can be arrived at that would
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be consistent with the absence of this effect in the presence of noise.

Conclusions similar to those drawn for magnitudes can be arrived at

for phase angles.

Iv.h, Program to Process Pulse Test Data by Trapezoidal Integration and

Piecewise Linear Approximation

The integration formulas given in the text as equations (8 ) and (9 )
for trapezoidal integration, and equation (10), (11) and (12) for PLA,
were programmed in a single FORTRAN program. The FORTRAN listing is

given in (R APP'O\JC.UE .

Iv.5. Selection of Input Pulse Width from A Priori Knowledge of G(s)

It is clear that the numerical calculation of magnitudes and phase
angles, using Equations (%), (5 ), (6 ) and (7 ) of the text, break
down at these frequencies for which the modified Fourier integrals Ai
and Bi (for the input function) are zero. In this work, it was arbitrarily
decided that frequencies above the value at which the first zero occurs
would not be considered. Theoretically, a ramp function produces no

zeroes. However, the displaced cosine will give zeroes for

Thus, a relationship between Ti and the largest frequency of interest,

W , 1s
max

-5




max T. ( 18)

Note that the period of a sinusoid having this frequency will be
exactly equal to one-half the pulse width Ti of the input pulse.

In addition, it was arbitrarily decided that the largest frequency

that one might be interested in plotting on a Bode diagram should satisfy

the relationship:

wmax = st (17)

where 1 is the time constant (for a general second order system, say).

Now, combining (16 ) and (17 ), there results

Ti=—T—— (18)

To estimate a lower bound on the number of input function sample points,
the following relationship proposed by Lees and Dougherty [see Reference
(2)] is adopted

L2m

At < (19)
- W
max
Thus, if N is the number of sample points, .
T
i < 2r
T -7 (20)
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which leads to

N < wmaxTi (21)
2T

Substituting (17) and (18) into (21), there results

(5t)(.8m)
N 2 2T
or
N > 20
References
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APPENDIX I

FORTRAN PROGRAM LISTINGS
FOR SECTION II




+

SIBFTC 2141M NODECK

DIMENSION X(6)s ESX{6)s XMIN(5)s XMAX(6)s XO(6)s Y(140)s T(140)»
1 E(140)s TT(140)s DARRAY(140,13)

DIMENSION S(6s6)s SX(6s6)s DER2(696)s XX(6)s MODE(6)s DERL(E) s

1 DXBAR(O)9DXX(0)9DQ(6)3DQX(6)’DY(7OO)’DZQ(é)’SCALR(D)’
2 MODEX(6)9D2QX(696)9XblAR|(135)

ESX = EXTERNAL SCALE FACTORS

Y = CALCULATED FUNCTION

T = INDEPENDENT VARIABLE

N = ACTUAL NO. OF COEFF1'S

M= NQOe. OF RESPONSE POINTS

NM= NO. OF EXITATION POINTS

X = COEFF'S OF FUNCTION ( TO BE CACULATED )
X0 = INITIAL GUESSES OF COEFF*'S

NN ANONANANANANANANA NS

999 READ 101s Ns M, NM
WRITE (64130)

130 FORMAT (//14H1 N M NMZ 7))
WRITE (6+180) NsMsNM

180 FORMAT (1XsI293Xs1293%Xs12)

READ (5,102) ( XO(I)s I=14N )
WRITE (69120}

120 FORMAT (//716H INITIAL POINTS//)
WRITE (65150) (XO(I), I=14N)
READ (5,102) ( ESX(I)s I=1sN )
WRITE (6+121)

121 FORMAT (//724H EXTERNAL SCALE FACTORS//)
WRITE (6+150) (ESX(I)s I=1sN)
READ (54+102) (XMIN(I)s I=1sN )
WRITE (6+122)

122 FORMAT (//9H XMIN(S)Y//)

WRITE (69150) (XMIN(I)s I=1sN)
READ (5,102) {(XMAX(I)s I=1sN )
WRITE (6,123)
123 FORMAT (//9H xXMAX(S)//)
WRITE (6+150) {XMAX{I)s I=1H4N)
READ (55102) ( Y(I) o I=1.M )
WRITE (6+4124) .

124 FCORMAT (//6H Y(S)//)

WRITE (6+150) (Y(I)s I=1sM)
READ (54102)(T(1)s I=1sM )
WRITE (6+125)

125 FORMAT (//6H T(S)Y//)

WRITZ (6s150) {(T(I)s I=1sM)
READ 102s (E(I)s I=1sNM)
PRINT 1286

126 FORMAT (//6H E(S)Y//)

‘ PRINT 150s ( E(I)s I=1sNM)

READ 102s ( TT(I)s I=1sNM)
PRINT 127

127 FORMAT (//7H TT(S)//)
PRINT 150y ( TT(I)s I=1sNM)

101 FORMAT (319%5)

102 FORMAT (10F844)

150 FORMAT (1H0»10F13.6)




129
21
c
C
C
C
C

959

20

30

100

DO 21 I=1sN
X(IY= XO(1)

EQUIVALENCE (KCOM(5)s ICODE) s (KCOM{(7)s IPT)

COMMON/REGCOM/COM(12) sKCOM(22)

NPT =M
NV=N

CALL REGTAP (0,0)
CALL REGSET (NPTs NVs 25 505 540s 0s KBASE)

CALL RDRG (SsSXsDER2sD2QX sXX sMODEsDER1sDXBAR sDXXsDQsDQX DY
DY (KBASE )} o XsESXsXMIN s XMAX sD2Q s SCALRyMODEX s XSTARTSDELTA)

IF (ICODE)Y 100,100,420

IF { IPT «GTe 1 )} GOTO 30

CALL SECCRD (Es TTs NMs X{2)s X(1l)s Y» Ts My ICODEs DARRAY)

DELTA= DARRAY (IPTs ICODE)

GOTO 959

CONTINUE

CALL PRINTD (Xs Ns Ys Te My Es TTs NM)

GOTO 999 '

END




SIBFTC 2141A NODECK

VAN YA NANANS)

OaONON

o)

aNaNS!

111
21

501
50

53

52

54

55

SUBROUTINE SECORD (Es TTs NMs ETAs TAUs Ys Ts NPTs ICODE,
1 DARRAY)

THIS SUBRGCUTINE CALCULATES DARRAY(eesee) FOR A SECOND
ORDER SYSTEMe

PARAMETERS OF THIS SECOND ORDER SYSTEM ARE ETA AND
TAU ( DAMPING RATIO AND TIME CONSTANT )e

DIMENSION E(1)s TT(1l)s Y(1)s T(1l)s DARRAY(140,513)

NOW TZST THE VALUE OF ETA.

N= NM-1

IF (ETA-1.) 21, 22y 23
I=1

IPT=1

P=0-O

Q=0.0

SSs= —-ETA/TAU

RR= ({le—ETA®X2)%%¢5)/TAU
Z= T(1)

IF (Z-TT(I+1)) 50s 50y 52

TNT12 = 2 = TT(D)

KSET = 0

S1= EXP(SS*TNT12)

C= (E(I+1) = ECIN/(TTCI+1) = TT(I))
B= E(I)=2e%TAUXETA*C

s2= P-B

S3=(Q-C~-5S*(P-8))/RR

S4= SIN(RR*TNT12)

S$5= COS(RR*¥TNT12)

Y1l= S1#(S52%S5 + S3%S4) + C¥TNT12 + B
YY= S1#SS#(S2%#55 + $3%S54) + S1¥(—=RR¥S52%S4 + RR¥S3%s5) + C
IF (KSET «GTe. 0) GOTO 54
DARRAY(IPTSICODE)= Y(IPT)- Y1
IPT=IPT+1

IF (IPT-NPT) 51s 51s 56
Z=T(IPT)

GOTO 501

KSET= 1

TNT12= TT(I+1)=-TT(I)

GOTO 53

P= Y1

Q=YY

I=1+1

IF {I-N) 501s 501s 55

2= TUIPT)Y=TT(NM)

AT THIS POINTs C(I) AND B(I) ARE BOTH Qe

Hl= EXP({SS%*Z)
H3= (Q-SS5%P) /RR
H4= SIN(RR*Z)
H2=P



H5= COS(RR¥*Z)
Y1= H1%{H2%HS + H3I*H4)
YY= SS¥HI*{H2%¥H5 + H3¥H4) + H1*(-RR¥H2%¥H4 + RR¥H3#%H5)
DARRAY{IPT»ICODE)= Y(IPT)-Y1
IPT=IPT+1
IF (IPT-NPT) 55, 555 56
56 GOTO 989
22 1

(IPT)
(Z-TT{I+1)) 60s 60y 62
NT12= Z - TT(1I)
KSET =0
63 C= (E(I+1)= E(IN/(TT(I+1)= TT(I))
Bz E(I)=2+%TAU*ETA%C
FF= P-3B
C2= Q-C+D1¥(B-p)
DDD=D1*TNT12 +1.
DED= EXP(TNT12%D1l)
Y1l= FF#DED+ C2%TNT12%DED+ C*TNT12 + B -
YY=D1%FF*DED + C2#DDD*DED + C
IF (KSET «GTe 0) GOTO 64
DARRAY (IPTsICODEY= Y(IPT)-Y1
IPT=IPT+1
IF (IPT-NPT) 61s 615 66
61 Z= T(IPT)
GOTO 601
62 KSET=1
TNT12= TT(I+1)~= TT(I)
GOTO 63
64 P=Y1
Q=YY
I=1+1
IF (I-N) 601y 601s 65
65 Z= T(IPT) = TT(NM)
C2= Q-D1%P
DSD= EXP(Z#D1)
Y1=P*DSD + C2%7z%DSD
YY= D1#P%DSD + D1%(~P)%#D1%¥Z%DSD
DARRAY(IPTsICODE)= Y(IPT)=Y1
IPT= IPT+1
IF (IPT-NPT) 65, 655 66
66 GOTO 989
23 I=1
IPT=1
P‘:Ooo
Q=0.0
Dl= —ETA/TAU —((ETA**2=14)%%45)/TAU
D2= —ETA/TAU +((ETA¥%2=1¢)%%.,5)/TAU .
2=T(IPT)
701 IF (Z=TT(I+1)) 70s 70s 72
70 TNT12= 2 - TT(I)
KSET= 0
73 C= (E(I+1)— E(INI/(TTC(I+1)= TT(I))
B= E(I)=2e#TAU*ETA%*C

601
60



71

72

74

75

76

989

Cz2= (Q-C+D1%(B-P))/(D2-D1)

Cl= P- B+ (Q=-C+D1%(B=P))/(D1~-D2)
DFD1=EXP(DLI*TNT12)
DED2=EXP(D2%TNT12)

Y1=C1l#DFD1+ C2%DFD2+ C¥TNT12 + B
YY= D1%C1%DFD1+ D2¥C2%DFD2+ C

IF (KSET «GTe 0) GOTO 74
DARRAY(IPTsICODE)= Y{(IPT)-Y1
IPT=IPT+1

IF (IPT=NPT) 71, 71s 76

Z=T(IPT)

GOTO 701

KSET=1

TNT12= TT(I+1)- TT(I)

GOTO 73

P=Y1

Q=YY

I=1+1"

IF (I-N) 701, 701y 75

Z= TLIPTY=-TT(NM)

Cl= P+(Q-D1%P)/(D1-D2)

C2= (Q-P*D1)/(D2-D1)
Y1=Cl*EXP(D1%*Z) + C2*EXP(D2%Z)
YY=D1%#C1l#EXP(D1%Z) + D2%(C2%EXP(D2%*2)
DARRAY(IPTsICODE)= Y(IPT)=Y1
IPT=IPT+1

IF (IPT-NPT) 755 755 76

GOTO 989

RETURN

END



C
C

190
191
150

3200
162

3000

3100

501
50

53

51

52

54

55
57

_ SIBFTC 2141B  NODECK

SUBROUTINE PRINTD (Xs Ns Ys Ts Ms Es TTs NM)
THIS SUBROUTINE FURNISHES ADPDITIONAL INFORMATION
CONCERNING THE REGRESSED FUNCTION AND PARAMETERS

DIMENSION X(1)s Y(1)s T(1)s E(1)s TT(1)s Y2(140)ys PP(140)
RITE (65190) '

FORMAT (//20H1REGRESSION COMPLETE//)
WRITE (65191)

FORMAT (//12H TAUs 10Xs 3HETA//)
WRITE (65150) (X(I)s I=1,4N)

FORMAT (1Xs 10F13e6)

FORMAT (1HOs F7e3s 8Xs Fl&eT7y 8Xy Flée7)
FORMAT (//32H0Y1 CALCED AT EACH T FOR NEW X'S//)
N= NM-1

ETA=X(2)

JTAU=X (1)

IF ( ETA = 1le¢ ) 9% 99, 919

PRINT 3000 !
FORMAT (1HOs 25H EIGNVALUES ARE COMPLEX //)
WRITE (64+162)

PRINT 3100 )

FORMAT (4HO s 1HT s12Xs14H RESPONSE (Y1)5»6Xs18H DERIVATIVE OF Y /)
I=1

1PT=1

2= T(IPT)

P:0.0

Q:0.0

55= ~-ETA/TAU :

RR= ((le—ETA¥*%2)%%4,5)/TAU

IF (Z=TT(I+1)) 50 50 52

TNT12 = Z2 - TT(I)

KSET=0

Sl= EXP{SS*TNT12)

C= (E(I+1) = ECINY/(TT(I+1) = TT(I1))

B= E(I)—2¢*TAUMETA#*C

S52= P-B

S5= COS{RR*¥TNT12)

$3=(Q=-C~585*(P~-B}}/RR

S4= SIN(RR*¥TNT12)

Y1= S1#(S2#S5 + S3*%S54) + C*¥TNT12Z2 + B

YY= S1%SS%(S52%S55 + S3%S4) + S1¥(~RR¥S2%S4 + RR¥#S3#g55) + C .
IF (KSET «GTe 0) GOTO 54

PRINT 3200s Zs Y1ls YY

Y2(IPT)= Y1

IPT=1IPT+1

IF (IPT-M) 51, 51s 56

Z=T(IPT)

GOTO 501

KSET=1

TNT12= TT(I+1)=-TT(I)

GOTO 53

P=Y1

Q=YY

I=1+1

IF (I-N) 501s 501s 55

ZE= T(IPT)

Z=T(IPT)= TT(NM)



56
99
4000

AT THIS POINTs C(I) AND B(I) ARE BOTH O

Hl= EXP(SS*Z)

H3= (Q-SS*P) /RR

H4= SIN(RR%*Z)

Hz2= P

H5= COS({RR*Z)

Y1= HI1#(H2%H5 + H3#H4)

YY= SS*HLI¥ (H2%HS + H3%H&4) + H1¥*(=RR¥H2¥H4 + RR¥H3*H5)
PRINT 3200s ZEs Y1ls YY

Y2(IPT)= Y1

IPT=IPT+1

ZE=T(IPT)

IF (IPT-M) 574 57 56

GOTO 9%

PRINT 4000

FORMAT (2HO s26H EIGNVALUES ARE MULTIPLE /)
WRITE (65162)

PRINT 3100

I=1

IPT=1

Z=T(IPT)

) P=0.0

601
60

63

61

62

64

65
67

O=0.0

Dl= -1./TAU

IF (Z-TT(I+1)) 60s 60y 62
TNT12= Z - TT(D)

KSET=0

C= (E(I+1)= E(INY/Z(TT(I+1)= TTH(I))
B= E(I)=2¢%TAU*ETA*C

FF= P-8

C2= Q-C+D1%(B=p)

DDD=D1%¥TNT12 +1.

DED= EXP(TNT12%D1)

Y1=FF*DED + C2%#TNT12%DED+ C*¥TNT12 + B
YY=D1%FF*DED + (C2¥DDD*DED + C
IF (KSET «GT« Q) GOTO 64

PRINT 32009 Zs Y1ls YY

Y2{IPT)= Y1

IPT=1PT+1

IF (IPT-M) 61s 61y 66

Z= T(IPT)

GOTO 601

KSET=1

TNT12= TT(I+1)-TT(I)

GOTO 63

bP=Y1

Q=YY

I=1+1

IF (I-N) 601s 601s 65

2E= T(IPT)

Z= T(IPT)= TT(NM)

C2= Q-D1%*P

DSD= EXP(Z%*D1)

Y1=P%¥DSD + (C2%7Z%*DSD

YY= D1¥P*DSD + D1*(—=P)*D1*#Z%DSD
PRINT 3200s ZE, Y1ls YY

Y2(IPT)Yy= Y1



66
919
5000

701
70

73

71

72

74

75
77

76
96
163

11

IPT=IPT+1

ZE=T(IPT)

IF (IPT-M) 67 675 66
GOTO 96

PRINT 5000

FORMAT (2HO »35H EIGNVALUES ARE REAL AND DISTINCT /)

WRITE (65162)

PRINT 3100

I=1

IPT=1

Z=T(IPT)

P=0e0

Q=0.0

D1= —ETA/TAU —~((ETA*%2-14)%%45)/TAU
D2= ~ETA/TAU +((ETA¥%¥2=-14)%%¢5)/TAU
IF(Z=TT(I+1)) 70s 70y 72

TNT1l2= Z = TT(I)

KSET=0

C= (E(I+1)= E(IN/ZATT(I+1)= TT(I))
Bz E(I)=2+%TAU%ETA*C

C2= (Q-C+D1%*(B-P))/(D2-D1)

Cl= P- B+ {Q=C+D1%*(B-P))/(D1-D2)
DFD1=EXP(D1%TNT12)
DFD2=EXP(D2#TNT12)

Y1=C1*DFD1l+ C2%DFD2+ C*¥TNT12 + B
YY= D1%¥C1*DFD1+ D2*#C2%DFD2+ C

IF (KSET «GTe 0) GOTO 74

PRINT 3200s Zs Y1, YY

Y2(IPT)= Y1

IPT=1PT+1

IF (IPT-M) 71, 715 76

Z=T(IPT)

GOTO 701

KSET=1

TNT12= TT(I+1)- TT(I)

GOTO 73

P=Y1

Q=YY

I=1+1

IF (I-N) 701s 701s 75

ZE= T(IPT)

Z= TUIPT)= TT(NM)

Cl= P+(Q-D1%P)/(D1-D2)

C2= (Q-P%D1)/(D2-D1)
Y1=C1l%EXP(D1%*Z) + C2#EXP(D2%Z)
YY=D1#C1*EXP(D1%Z) + D2*C2¥EXP(D2%Z)
PRINT 3200s ZEs Y1l YY

Y2(IPT)= Y1

IPT= IPT+1

ZE=T(IPT) ;

IF (IPT-M) 77, 775 76

GOTO 96

WRITE (65163)

FORMAT (//23HODIFFERENCE IN Y1 AND Y/7) .
DO 11 I=1,M

PP({Iy= Y2(I) = Y(I)

WRITE (65150) (PP(I)s I=1,M)
SQRQ = 0.0



12

152

151

DO 12
SQRQ =
WRITE
FORMAT
WRITE
FORMAT

RETURN

END

I=1sM

SQRQ +(PP({I)})%x2

(6+152)

(//728H0SUM OF SQUARES OF RESIDUALS//)
(6-151) SQRQ

{1Xs E1546)




APPENDIX II

FORTRAN PROGRAM LISTINGS

FOR SECTION III
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$IBFTC 2111IM NODECK

DIMENSION X(6)s ESX(6)s XMIN(6)s XMAX(6)s XO(6)s Y(T0)s Z(70)>»
1Q(70)s P(70)

DIMENSION S(6s6)s SX(6356), DER2(6s6) s XX(6)s MODE(6)s DERL(6))

1 DXBAR(6) sDXX(6)s DQ(6)sDQAX(6)sDY(1680)sD2Q(6)9SCALR(6) s
2 MODEX(6)s D2QX(636) s XSTARI(135)

c )

c

C ESX = EXTERNAL SCALE FACTORS

C Y = CALCULATED FUNCTION

C Z = INDEPENDENT VARIABLE

C N = ACTUAL NOe OF COEFF'S

c . M = ACTUAL NO. OF DATA POINTS

C X = COEFFtS OF FUNCTION ( TO BE CACULATED )

C X0 = INITIAL GUESSES OF COEFF!'S

C

C

999 READ (5,101) NsM
WRITE (6+130)

130 FORMAT (//8H1 N M// )

WRITE (65180) NsM

180 FORMAT (1XsI2s3Xs12)

READ (55102) ( XO(I)s I=1,N ) -
WRITE (6+120)

120 FORMAT (//1i6H INITIAL POINTS//)
WRITE (6+150) (XO(I)s I=1,N)
READ (54102) ( ESX(I)s I=1sN )
WRITE (6s121)

121 FORMAT (//24H EXTERNAL SCALE FACTORS//)
WRITE (65150) (ESX(I)s I=1sN)
READ (55102) (XMIN(I)s I=1>N )
WRITE (6+122)

122 FORMAT (//9H XMIN(S)//7)

WRITE (6s150) (XMIN(I)s I=1sN)
READ (5,102) (XMAX(I)s I=1sN )

, WRITE (6+123)

123 FORMAT (//9H XMAX(S)//)

WRITE (6150) (XMAX(I)s I=1,N)
READ (55102) ( Y(I) 5 I=1eM )
WRITE (65124)

124 FORMAT (//6H Y(S)//)

WRITE (6+150) (Y(I)s I=1,M)
READ (5,1023(Z(I)s I=1sM )
WRITE (6+125)

125 FORMAT (//6H 2(S)/7)

WRITE (6+150) (Z(I1)s I=1,M)

101 FORMAT (214)

102 FORMAT (10F8e4)

150 FORMAT (1Xs 10F13e8)

C
DO 2 I=1,sN
’ 2 X(I) = xo(l)
C
EQUIVALENCE (KCOM(5)s ICODE) s (KCOM(T7)s IPT)
C
COMMON/REGCOM/COM(12)sKCOM(22)
C

NPT =M



NV=N

CALL REGTAP {(0+0)
CALL REGSET (NPTs NVs 23 509 5.0s 0s KBASE)

10 CALL RDRG (S5sSXsDER2sD2QXsXX sMODEsDER1 sDXBARSDXX»DQsDQX DY
1 DY (KBASE) s XsESXsXMIN s XMAX sD2Q » SCALR sMODEX s XSTART »DELTA)

IF (ICODE) 1004100520 ‘

20 CALL F2MREG (Ys Zs Xs DELTA, IPT )
GO 70 10 .

100 CONTINUE
CALL F2MCAL ( Xs Ys Zs Qs Ny My P )
GO TO 999
END



[

$IBFTC 2111A NODECK

C
C

SUBROUTINE F2MREG ( Ys Zs X» DELTAs IPT )
THIS SUBROUTINE FURNISHES THE TRANSFER FUNCTION
TO BE REGRESSED ON BY R = D
DIMENSION X(1)s Y(1)s Z(1)
DELTAL = ((Lle=(Z(IPT)¥X (1)) %%2)%%2 + (26%X(2)¥Z(IPT))%*2)%%e5
DELTA = Y(IPT) - X{(3)/DELTAl

RETURN

END



[

$IBFTC 2121M NODECK

DIMENSION X(6)y ESX(S)s XMIN(B)s XMAX(6)s XO(6)s Y(140)s Z(140)
1Q€140)s P(70}s ANG(140)s ANL(140)

DIMENSION S(6+6)s SX(6s6)s DER2(6s6)s XX(6)s MODE(6)s DER1(6)

1 DXBAR(6) sDXX(6)s DQ(6)sDQAX(6)5DY(3360)sD2Q(6)sSCALRI(6)
2 MODEX(6)s D2QX(656) s XSTART(135)
C ,
C
C ESX = EXTERNAL SCALE FACTORS
e NMAX = MAXe NOe OF COEFF'S ( 6 )
C MMAX = MAXe NOe OF DATA POINTS ( 70 )
C Y = CALCULATED FUNCTION
C ANG = REAL PHASE ANGLE IN DEGREES ( Ae Re )
C Z = INDEPENDENT VARIABLE
C N = ACTUAL NOe OF COEFF'S
C M = ACTUAL NOe OF DATA POINTS
C X = COEFF'S OF FUNCTION ( TO BE CACULATED )
C X0 = INITIAL GUESSES OF COEFF'g
C
999 READ (5,101) NsM
WRITE (6,130)
130 FORMAT (//8H1 N M/7)

WRITE (65180) NsM

180 FORMAT (1X»I24+3Xs12)

READ (55102} ( XO(I)s I=1,N )
WRITE (6+120)

120 FORMAT (//716H INITIAL POINTS//)
WRITE (6+150) (XO(I)y I=1,N)
*READ (55102) ( ESX(I)s I=1sN )

WRITE (65121)

121 FORMAT (//24H EXTERNAL SCALE FACTORS//)
WRITE (6+150) (ESX(I3s I=14N)
READ (55102) (XMIN(I)» I=1sN )
WRITE (6+122)

122 FORMAT (//9H XMIN(S)//)

WRITE (65150) (XMIN(I)s I=1,N)
READ (5+102) (XMAX{I)s I=1sN )
WRITE (65123)

123 FORMAT (//9H XMAX{(S)//)

WRITE (6+150) (XMAX(I)s I=1sN)
READ (55102) ( Y(I) o I=1sM )
WRITE (64+124)

124 FORMAT (//6H Y{(S)Y//)

- WRITE (65150} {(Y(I)s I=1,4M)
READ (5+102) (ANG(I)y I=1sM )

"WRITE (65126)

126 FORMAT (s/19H ANG(S) IN DEGREES//)
WRITE (6+150) (ANG(I)s I=1,M)
DO 23 I=1sM

23 ANGI(I) = (ANG(I1))/57.29578
READ (55102)(Z(1)s I=1sM )
WRITE (65125)

125 FORMAT (//6H Z(S)//)

WRITE (6+150) (Z(I)y I=1,M) .

101 FORMAT (214)

102 FORMAT (10F8e4)

150 FORMAT (1Xs 10F13.8)



21

22

9

20

100

DO 21 I=1>,N

X{I) = XO(I)

DD 22 I=1sM

MM = 1T + M

Y(MM) = Y(I)
ANG(MM) = ANGI(1I)
Z(MM)y = 2(1)

I1 = M/2

IM = (3¥M)/2

EQUIVALENCE (KCOM(5)s ICODE) » (KCOM(T)s IPT)
COMMON/REGCOM/COM(12) sKCOM(22)

NPT =M%2

NV=N

CALL REGTAP (0,0)

CALL REGSET (NPTs NVs 25 50s 540s Os KBASE)

CALL RDRG (S3sSXsDER2+D2QXsXX sMODEsDER1 sDXBARsDXXsDQsDQXsDY
1 DY(KBASE)9X9E5X9XMIN9XMAXsDZQsSCALRgMOQEX’XSTART9DELTA)

IF (I'CODE) 100510020

CALL F2PREG ( Ys 23 Xs DELTAs IPTIIs IMy My ANG )
GO TO 9

CONTINUE

CALL F2PCAL( Xs Qs ANLs Ys Zs Ns My Py II )

GO TO 999

END



<

$IBFTC 2123A NODECK

C
C

ANAOANOAONNONOONOOO

n

w

9

SUBROUTINE F2PREG(Ys Zs Xs DELTA, IPTs Il IMy M, ANG )
THIS SUBROUTINE FURNISHES THE TRANSFER FUNCTION
TC BE REGRESSED ON BY R - D
DIMENSION X(1)s Y(1)s Z(1)s ANGI(1)
IF (IPT = M) 54596
IF (IPT = II) 1+1s2
DELTI1 = Y(IPT)*COS(ANG(IPT))
CELTLI2=X(3)1/({1e—=(Z(IPTI¥X{1L))HH2)¥%2 + (2¥X(2)¥Z(IPT))*%2)%*%,5
DELT13 =COS(ATAN((=2%Z (IPT)*X(2))/(1le ={(Z(IPT)¥X(1))¥*%¥2)))
DELT14 = DELT13%DELTI12
DELTA = DELT11 - DELT14
GO TO 9

DELT31 = Y(IPT)*COS(ANG(IPT))
DELT32=X(3)/((1e=(Z(IPT)¥X(1))%¥2)%%2 + (2 *X(Z)*Z(IPT))**Z)** 5
DELT33 = ATAN((—2%Z(IPT)*X(2))/(le —=(Z(IPT)*X(1))%%2))
DELT35 = COS(DELT33 = 3.14159)
DELT34 = DELT35%DELT32
DELTA = DELT31 - DELT34
GO TO 9
IF (IPT - IM) 35354
DELT21 = Y(IPT)*SIN(ANG(IPT))
DELT22=X(3)/((1e=(Z(IPT)*¥X(1))%¥*2)%%2 + (24%X(2)%Z(IPT))*%2)%%¢5
DELT23 = ATAN((=2e%Z(IPT)¥X(2))/(le =(Z(IPT)*X(1))%%2))
DELT24 = SIN(DELT23)
DELT25 = DELT22 * DELT24
DELTA = DELT21 - DELTZ25
GO T0 9
DELT41 = Y(IPT)*SIN(ANG(IPT))
DELT42=X(3)/((1e~(Z(IPT)*X(1))¥#2)%%2 + (2¥X{(2)¥Z(IPT))¥*¥2)¥*%,5
DELT43 = ATAN((=2e¥Z(IPT)®X(2))/(le —(Z(IPT)*X(1))#%2))
DELT44 = SIN(DELT43 - 3.14159)
DELT45 = DELT42 * DELT44
DELTA = DELT41 - DELT45
GO T 9
CALC RESIDUE(S) FOR IPT DATA POINT
AND PRESENT X VALUES
NOTEeseeseee ALSO KEEP NOe OF DATA PTSe ON LEFT OF WT =1l.
EQUAL TO NO. OF DATA PTSe ON RIGHT OF WT =l
NOTEeeeseses ALWAYS KEEP M/2 TH PTe ON THE LEFT OF WT =1.
NOTE eeceecese ALWAYS START WITH X(1) BETWEEN
THE TwO MIDDLE POINTS
RETURN
END



“

SIBFTC 2124A NODECK
SUBROUTINE F2PCAL ( Xs Qs ANLs Ys Zs» Ns My, P, II )

C THIS SUBROUTINE FURNISHES ADDITIONAL INFORMATION

C - CONCERNING THE REGRESSED FUNCTION AND PARAMETERS
DIMENSION X(6)s Q(70)s Z2(70)s ANL(70)s P(T70)s Y(T0)
WRITE {(565190)

190 FORMAT (//20H1REGRESSION COMPLETE/Z/)

WRITE (6+191)

X(2) = X(2)/X(1)
191 FORMAT {(//716H CORRECT X(I*sS)//)
WRITZ (65150) (X{I)s I=1,N)

WRITE (6+162)

162 FORMAT (//31H0Q CALCED AT EACH Z FOR NEW X'S//)
DO 91 I=1sM .

91 QUIN=X(3)/((1le=(Z(I)%X(1))¥%#2)%%2 + (2e%¥X(2)%¥Z(I1)%¥X(1))*¥%2)*%¢5
WRITE (6+150) ( Q(I)s I =1,M)
WRITE (6+155)

155 FORMAT (//34H CALCED PHASE ANGLES FOR NEW X(S)//)
DO 68 I=1.M

68 ANL(I) = ATAN((=2e*¥Z(I)®¥X(1)¥X(2))/(1e=(Z(I)*¥X(1))*%2))~3414159
DO 66 I=1,11

66 ANL (1) = ATAN((-2*Z(I)¥X(L)*X(2))/(1le =(Z(I)%¥X(1))%%2))
DO 67 I=1,M

67 ANL(I) = (ANL(I))¥%¥574,29578
WRITE (64150} (ANL(I)y I=1sM)
WRITE (6+163)

163 FORMAT (//22HODIFFERENCE IN Q AND Y/7/)
DO 11 I=14M

11 P(I) = Q(I) - v(I)

WRITE (69150) ( P(I)y I=1,M)
WRITE (61164)

164 FORMAT (//37HODIFFERENCE IN Q AND Y ( NORMALIZED )//)
DO 998 I=1,.M

998 Q(I) = ( Q(I) = Y(I)Y y/X(3)
WRITE (6+150) { Q(IYs I=1eM )
SQRQ = 0.0

DO 12 I=1.M
12 SQGRQ = SQRQ + (Q(I))**2
WRITE (6+152)
152 FORMAT (//45HOSUM OF SQUARES OF THE NORMALIZED DIFFERENCES//)
WRITE (65151) SQRQ
151 FORMAT (1Xs El546)

150 FORMAT (1Xs 10F13e8)
RETURN

END



APPENDIX IIT
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SIBFTC 2014F

C PROGRAM TO NUMERICALLY REDUCE PULSE TEST INPUT AND OUTPUT DATA TO
c AMPLITUDE RATIO AND PHASE ANGLE AS FUNCTIONS OF FREQUENCY s USING
C PIECEWISE LINEAR APPROXIMATION AT HIGH FREQUENCIES AND TRAPEZCIDAL
C INTEGRATION AT LOW FREQUENCIES
C
DIMENSION FI(100)s TI(100)s FO(100)) TO(100)
DIMENSION SI(100)s SO(100)
DIMENSION TITLE(13)
C
PI = 34141592654
ANGLK = 180s / PI
C
10 READ 1020, TITLE
PRINT 2060y TITLE
C
READ 1000s NWs WMAXs NIy NO
PRINT 2000sNWs WMAXs NIy NO
C
READ 1010s (TI(J)s FI(J)s J = 1sNI)
READ 1010, (TO(J)s FO(J)s J = 1,NO)
C
PRINT 2010s (TI(J)s FI(J)s J = 1sNI)
PRINT 2020s (TO(J)s FO(J)s J = 1sNO)
C
NIM1 = NI -1
NOM1 = NO - 1 .
DLOGW = (ALOGLO(WMAX) + 1le) / FLOAT(NW =~ 1)
Fw = 10. %% DLOGW
K = 0
C
Al = Qe
DO 12 J = 1,NIM1
12 Al = Al + (FI(J) + FI(JU+1)) %* (TI(J+1) - TI(J))
C
AQ = Do
DO 13 J = 1,s,NOM1
13 AQ = AO + (FO(J) + FO(J+1)) * (TO(J+1) = TO(J))
C
FNCRM = AC / Al
FNRMI = SQRT(FNORM)
FNRMO = le / FNRMI
C
DO 14 J = 1,NI
14 FI1(J) = FI(J) * FNRMI
C
DO 15 J = 1,sNO
15 FO(J) = FQO(J) * FNRMO
C
PRINT 2030s FNRMIs FNRMO
PRINT 2010 (TI(J)Ys FI(J)y J = 1sNI)
PRINT 2020 (TO(J)s FOUJ)s J = 1,4NO)
C
DO 16 J = 14NIM1
16 SI(J) = (FI(J+1) = FI(J)) 7/ ATI(J+1) - TI(J))
C ’
DO 17 J = 1,NOM1
17 so(U) = (FO(J+1) = FOU(J)) / (TO(J+1) = TO(JI))



20

30

40

PRINT 2045
PRINT 2040

w
DO 80 N

W ou

IF(K «EQ

Al

BI

WT
FCOSJ
FSINJ
DO 20 J
WT
FCOSJ1
FSINJ1
DT

Al

BI
FCOSJ
FSINJ
Al

BI

[ S T T I N 1 AN £ T | T 1 N TR 1 O 1

AO

BO

WT
FCOSJ
FSINJ
DO 30 J
WT
FCOSJ1
FSINJ1
DT

AO

BO
FCOSJ
FSINJ
AC

BO

{1 T T U A A | N T I T { B 1}

nwon

GO TO 70

WI

ATl

Al2

BI1

BIZ2

WT

cosJ
SINJ
FCOSJ
FSINJ
DO 50 U

ol
1 oNW

1) GO TO 40

Oe

Os

W % TI(1l)

FI(1) % COS(WT)

FICl)y * SIN(WT)

1,NIM1

W ¥ TI(J+1)

FI(J+1) % COS(WT)

FI(J+1) ¥ SIN(WT)

TI(J+1) = TI(J)

Al + (FCOSJ + FCOSJl) #* DT
BI + (FSINJ + FSINJ1) % DT
FCOsJl

FSINJ1

5 ¥ Al

«5 # BI

Oe

Oe

W % TOI(1)

FO(1l) % COS(WT)

FO(1l) * SIN(WT)

1,NOM1

W o TO(J+1)

FO(J+1) % COSI(WT)

FO(J+1) * SINIWT)

TO(J+1) = TO(J)

AQD + (FCOSJ + FCOSJl) * DT
BO + (FSINJ + FSINJ1) # DT
FC0SJ1

FSINJ1

«5 ¥ AQ

«5 % BO

le / W

Oe

Oe

Oe

Oe

W ¥ TI(1)
COS(WT)
SIN(WT)
FI(l) % COSJ
FI{1l) * SINJ
1sNIM1



50

60

70

g0

‘BIl

 FSINJ

WT
CosJl
SINJ1
FCOSJ1
FSINJ1
ATl
Al2

[T T N O T | R 1 |

BI2
CoSJ
SINJ
FCOSJ
FSINJ
Al

BI

nonwononon

AOQ1l
AQ2
BC1
B02
wT
cosJ
SINJ
FCOSJ

DO 60 J
WT
cosJl
SINJ1
FCOSJ1
FSINJ1
AOC1
AO2
BO1
BOZ2
CoSsJ
SINJ
FCOSJ
FSINJ
AQ

BO

[T (B N L £ AN I TN T O 1A [ N | N AN { I [ 1 [T I LI T | I | B 1}

AMPL

ARG
ANGLR
IF{ARG o
ANGLD
ILOG

T

W onun

W ¥ TI{J+1)

COS(WT)

SINIWT)

FI(J+1) * COSJI

FI(J+1) % SINJL

ATl + FSINJ1 - FSINJ

AT2 + SI(J) * (COSJ1 = COSJ)
BIl + FCOSJ1l - FCOSJ

BI2 + SI(J) * (SINJ1l - SINJ)
CosJl

SINJ1

FCOSJU1

FSINJ1

WI * (AIl + WI # AI2)

-WI % (BI1l - WI * BI2)

O

Ooe

O

O

W % TO(1)

COS(wT)

SINIWT)

FO(l) #* COSJ

FO{l) * SINJ

1,NOM1

W % TO(J+1)

COS(WT)

SIN(WT)

FO(J+1) * COSJ1
FO({J+1) % SINJ1

A0l + FSINJ1l = FSINJ
AD2 + SO(J) * (COSJl = COSJ)
B0l + FCOSJ1l - FCOSJ
BO2 + SO(J) * (SINJ1 = SINJ)
C0SJ1

SINJ1

FCOSJUl

FSINJL

WI * (A0l + WI * AO2)
-WI % (B0l - WI * BO2)

SQRT( (AQ*%2 + BO*¥2) / (Al*¥*2 + BlI*¥%x2))
(AO*BI - AI*BO) / (AO¥AI + BO%*BI)
ATAN(ARG) :

e Oe¢) ANGLR = ANGLR = PI

ANGLR * ANGLK

ALOG10O(W)

PRINT 2050s W» WLOGs AMPLs ANGLRs ANGLDs AO» BO»

W

K
IF(K «EQe
PRINT 2046
GO TO 18

FW # W

K+ 1
2) Go 70 10

Al,

BI



1000 FORMAT(I5s 5X» F1l0e0s I5s 5Xs 15)
1010 FORMAT(8F1040)

1020 FORMAT(13A6, A2)

2000 FORMAT(1HOs 18HNOe OF FREQUENCIESs I11 / 18HOMAXIMUM FREQUENCY

1 Fl2.5 7/ 20HONO. OF INPUT POINTS»s 110 / 21HONOe OF OUTPUT POINTS)
2 19

c :
2010 FORMAT(1HO /// 18HOINPUT DATA POINTS 7/ 1HOs 8Xs LHTIMEs 12X,
1 11HPULSE LEVEL // (1lH » 2F2046))
C

2020 FORMAT(1HC /// 19HOOUTPUT DATA POINTS / 1HO»s 8X»s 4HTIMEs 12X»
1 11HPULSE LEVEL // (1H » 2F2046))
C
2030 FORMAT(1HO /// 25HOINPUT NORMALIZING FACTORs F1l045/

1 26HOOUTPUT NORMALIZING FACTORs F9e5 //// 16HONORMALIZED DATA)
C

2040 FORMAT(1HO /// 23HODATA REDUCTION RESULTS //
1 1HOs 6Xs 5HOMEGA, 8Xs 9HLOG OMEGAs 6Xs 9HAMPLITUDE, 6X)»
1 9HANGLE-RAD»> 6X» 9HANGLE-DEGs 9Xs 2HAOs 12X»s 2HBO,s 12X, 2HAI,
1 12X, 2HBI /)

C

2045 FORMAT(1Hls 23HTRAPEZOIDAL INTEGRATION )

2046 FORMAT(1Hl»s 30HPIECEWISE LINEAR APPROXIMATION )

C

2050 FORMAT(1H s 5F15e65 4F1l4e6)

C . ‘

2060 FORMAT(1Hls 13A6s A2)

C

END



